35986841_10216840653711318_1105697261150535680_n

Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / Xiaohong Chen, Yiu-Wing Mai.

By: Chen, Xiaohong
Contributor(s): Mai, Y. W, 1946-
Material type: TextTextPublisher: London : Imperial College Press, c2013Edition: 1st edDescription: xix, 305 p. : ill. ; 24 cmISBN: 9781848166639; 184816663XSubject(s): Magnetic materials -- Fracture | Fracture mechanics -- Mathematics | Nonlinear theoriesDDC classification: 620.1126 LOC classification: TA409 | .C4273 2013
Contents:
Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors (SIF) -- 1.3.Energy Release Rate (ERR) -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture (EWF) -- 1.8.Configuration Force (Material Force) Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --
Contents note continued: 3.3.3.Formulation based on Gibbs free energy functional -- 3.4.Thermoviscoelastic Boundary-Initial Value Problems -- 4.1.Introduction -- 4.2.Basic Field Equations -- 4.3.General Solution Procedures -- 4.4.Debates on Crack-Face Boundary Conditions -- 4.5.Fracture Criteria -- 4.5.1.Field intensity factors -- 4.5.2.Path-independent integral -- 4.5.3.Mechanical strain energy release rate -- 4.5.4.Global and local energy release rates -- 4.6.Experimental Observations -- 4.6.1.Indentation test -- 4.6.2.Compact tension test -- 4.6.3.Bending test -- 4.7.Nonlinear Studies -- 4.7.1.Electrostriction/magnetostriction -- 4.7.2.Polarization/magnetization saturation -- 4.7.3.Domain switching -- 4.7.4.Domain wall motion -- 4.8.Status and Prospects -- 5.1.Introduction -- 5.2.Fundamental Principles of Thermodynamics -- 5.3.Energy Flux and Dynamic Contour Integral -- 5.4.Dynamic Energy Release Rate Serving as Crack Driving Force --
Contents note continued: 5.5.Configuration Force and Energy-Momentum Tensor -- 5.6.Coupled Electromechanical Jump/Boundary Conditions -- 5.7.Asymptotic Near-Tip Field Solution -- 5.8.Remarks -- 6.1.Introduction -- 6.2.Thermodynamic Formulation of Fully Coupled Dynamic Framework -- 6.2.1.Field equations and jump conditions -- 6.2.2.Dynamic energy release rate -- 6.2.3.Invariant integral -- 6.3.Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions -- 6.3.1.Generalized plane crack problem -- 6.3.2.Steady-state solution -- 6.3.3.Path-independent integral for steady crack growth -- 6.4.Magneto-Electro-Elastostatic Crack Problem as a Special Case -- 6.5.Summary -- 7.1.Introduction -- 7.2.Shear Horizontal Surface Waves -- 7.3.Transient Mode-III Crack Growth Problem -- 7.4.Integral Transform, Wiener-Hopf Technique, and Cagniard-de Hoop Method -- 7.5.Fundamental Solutions for Traction Loading Only --
Contents note continued: 7.6.Fundamental Solutions for Mixed Loads -- 7.7.Evaluation of Dynamic Energy Release Rate -- 7.8.Influence of Shear Horizontal Surface Wave Speed and Crack Tip Velocity -- 8.1.Introduction -- 8.2.Formulation of Boundary-Initial Value Problems -- 8.3.Basic Solution Techniques -- 8.4.Fracture Characterizing Parameters -- 8.4.1.Field intensity factors -- 8.4.2.Dynamic energy release rate -- 8.4.3.Path-domain independent integral -- 8.5.Remarks -- 9.1.Introduction -- 9.2.Local Balance Equations for Magnetic, Thermal, and Mechanical Field - Quantities -- 9.3.Free Energy and Entropy Production Inequality for Memory-Dependent Magnetosensitive Materials -- 9.4.Coupled Magneto-Thermo-Viscoelastic Constitutive Relations -- 9.5.Generalized J-Integral in Nonlinear Magneto-Thermo-Viscoelastic Fracture -- 9.6.Generalized Plane Crack Problem and Revisit of Mode-III Fracture of a Magnetostrictive Solid in a Bias Magnetic Field -- 10.1.Introduction --
Contents note continued: 10.2.Local Balance Equations for Electric, Thermal, and Mechanical Field Quantities -- 10.3.Free Energy and Entropy Production Inequality for Memory-Dependent Electrosensitive Materials -- 10.4.Coupled Electro-Thermo-Viscoelastic Constitutive Relations -- 10.5.Generalized J -Integral in Nonlinear Electro-Thermo-Viscoelastic Fracture -- 10.6.Analogy between Nonlinear Magneto- and Electro-Thermo-Viscoelastic Constitutive and Fracture Theories -- 10.7.Reduction to Dorfmann-Ogden Nonlinear Magneto- and Electro-elasticity -- 11.1.Introduction -- 11.2.Global Energy Balance Equation and Non-Negative Global Dissipation Requirement -- 11.3.Hamiltonian Density and Thermodynamically Admissible Conditions -- 11.3.1.Generalized functional thermodynamics -- 11.3.2.Generalized state-variable thermodynamics -- 11.4.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 11.5.Generalized Energy Release Rate versus Bulk Dissipation Rate --
Contents note continued: 11.6.Local Generalized J-Integral versus Global Generalized J-Integral -- 11.7.Essential Work of Fracture versus Nonessential Work of Fracture -- 12.1.Introduction -- 12.2.Nonlinear Field Equations -- 12.2.1.Balance equations -- 12.2.2.Constitutive laws -- 12.3.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 12.4.Correlation with Conventional Fracture Mechanics Approaches -- 13.1.Introduction -- 13.2.Energy Release Rate Method and its Generalization -- 13.3.J-R Curve Method and its Generalization -- 13.4.Essential Work of Fracture Method and its Extension -- 13.5.Closure.
Summary: This volume provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities --
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
Books Books Centeral Library
Second Floor - Engineering & Architecture
620.1126 C.X.F 2013 (Browse shelf) Available 21784

Includes bibliographical references (p. 276-298) and index.

Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors (SIF) -- 1.3.Energy Release Rate (ERR) -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture (EWF) -- 1.8.Configuration Force (Material Force) Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --

Contents note continued: 3.3.3.Formulation based on Gibbs free energy functional -- 3.4.Thermoviscoelastic Boundary-Initial Value Problems -- 4.1.Introduction -- 4.2.Basic Field Equations -- 4.3.General Solution Procedures -- 4.4.Debates on Crack-Face Boundary Conditions -- 4.5.Fracture Criteria -- 4.5.1.Field intensity factors -- 4.5.2.Path-independent integral -- 4.5.3.Mechanical strain energy release rate -- 4.5.4.Global and local energy release rates -- 4.6.Experimental Observations -- 4.6.1.Indentation test -- 4.6.2.Compact tension test -- 4.6.3.Bending test -- 4.7.Nonlinear Studies -- 4.7.1.Electrostriction/magnetostriction -- 4.7.2.Polarization/magnetization saturation -- 4.7.3.Domain switching -- 4.7.4.Domain wall motion -- 4.8.Status and Prospects -- 5.1.Introduction -- 5.2.Fundamental Principles of Thermodynamics -- 5.3.Energy Flux and Dynamic Contour Integral -- 5.4.Dynamic Energy Release Rate Serving as Crack Driving Force --

Contents note continued: 5.5.Configuration Force and Energy-Momentum Tensor -- 5.6.Coupled Electromechanical Jump/Boundary Conditions -- 5.7.Asymptotic Near-Tip Field Solution -- 5.8.Remarks -- 6.1.Introduction -- 6.2.Thermodynamic Formulation of Fully Coupled Dynamic Framework -- 6.2.1.Field equations and jump conditions -- 6.2.2.Dynamic energy release rate -- 6.2.3.Invariant integral -- 6.3.Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions -- 6.3.1.Generalized plane crack problem -- 6.3.2.Steady-state solution -- 6.3.3.Path-independent integral for steady crack growth -- 6.4.Magneto-Electro-Elastostatic Crack Problem as a Special Case -- 6.5.Summary -- 7.1.Introduction -- 7.2.Shear Horizontal Surface Waves -- 7.3.Transient Mode-III Crack Growth Problem -- 7.4.Integral Transform, Wiener-Hopf Technique, and Cagniard-de Hoop Method -- 7.5.Fundamental Solutions for Traction Loading Only --

Contents note continued: 7.6.Fundamental Solutions for Mixed Loads -- 7.7.Evaluation of Dynamic Energy Release Rate -- 7.8.Influence of Shear Horizontal Surface Wave Speed and Crack Tip Velocity -- 8.1.Introduction -- 8.2.Formulation of Boundary-Initial Value Problems -- 8.3.Basic Solution Techniques -- 8.4.Fracture Characterizing Parameters -- 8.4.1.Field intensity factors -- 8.4.2.Dynamic energy release rate -- 8.4.3.Path-domain independent integral -- 8.5.Remarks -- 9.1.Introduction -- 9.2.Local Balance Equations for Magnetic, Thermal, and Mechanical Field - Quantities -- 9.3.Free Energy and Entropy Production Inequality for Memory-Dependent Magnetosensitive Materials -- 9.4.Coupled Magneto-Thermo-Viscoelastic Constitutive Relations -- 9.5.Generalized J-Integral in Nonlinear Magneto-Thermo-Viscoelastic Fracture -- 9.6.Generalized Plane Crack Problem and Revisit of Mode-III Fracture of a Magnetostrictive Solid in a Bias Magnetic Field -- 10.1.Introduction --

Contents note continued: 10.2.Local Balance Equations for Electric, Thermal, and Mechanical Field Quantities -- 10.3.Free Energy and Entropy Production Inequality for Memory-Dependent Electrosensitive Materials -- 10.4.Coupled Electro-Thermo-Viscoelastic Constitutive Relations -- 10.5.Generalized J -Integral in Nonlinear Electro-Thermo-Viscoelastic Fracture -- 10.6.Analogy between Nonlinear Magneto- and Electro-Thermo-Viscoelastic Constitutive and Fracture Theories -- 10.7.Reduction to Dorfmann-Ogden Nonlinear Magneto- and Electro-elasticity -- 11.1.Introduction -- 11.2.Global Energy Balance Equation and Non-Negative Global Dissipation Requirement -- 11.3.Hamiltonian Density and Thermodynamically Admissible Conditions -- 11.3.1.Generalized functional thermodynamics -- 11.3.2.Generalized state-variable thermodynamics -- 11.4.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 11.5.Generalized Energy Release Rate versus Bulk Dissipation Rate --

Contents note continued: 11.6.Local Generalized J-Integral versus Global Generalized J-Integral -- 11.7.Essential Work of Fracture versus Nonessential Work of Fracture -- 12.1.Introduction -- 12.2.Nonlinear Field Equations -- 12.2.1.Balance equations -- 12.2.2.Constitutive laws -- 12.3.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 12.4.Correlation with Conventional Fracture Mechanics Approaches -- 13.1.Introduction -- 13.2.Energy Release Rate Method and its Generalization -- 13.3.J-R Curve Method and its Generalization -- 13.4.Essential Work of Fracture Method and its Extension -- 13.5.Closure.

This volume provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities --

There are no comments on this title.

to post a comment.