35986841_10216840653711318_1105697261150535680_n

Quantum electronics for atomic physics and telecommunication / Warren Nagourney

By: Nagourney, Warren G [author]
Contributor(s): Nagourney, Warren G. Quantum electronics for atomic physics | Ohio Library and Information Network
Material type: TextTextSeries: Oxford graduate texts: Publisher: New York, NY : Oxford University Press, 2014Copyright date: 2014Edition: Second editionDescription: 1 online resource : illustrationsContent type: text Media type: computer Carrier type: online resourceISBN: 9780191779442; 019177944xSubject(s): Quantum electronics | Laser beamsGenre/Form: Electronic booksAdditional physical formats: Print version:: Quantum electronics for atomic physics and telecommunication.DDC classification: 537.5 LOC classification: QC689.5.L37Online resources: OhioLINK Connect to resource | Oxford Scholarship Online Connect to resource | Oxford Scholarship Online Connect to resource (off-campus)
Contents:
Gaussian beams -- Optical resonators : geometrical properties -- Energy relations in optical cavities -- Optical cavity as frequency discriminator -- Laser gain and some of its consequences -- Laser oscillation and pumping mechanisms -- Descriptions of specific CW laser systems -- Laser gain in a semiconductor -- Semiconductor diode lasers -- Guided-wave devices and fiber lasers -- Mode-locked lasers and frequency metrology -- Laser frequency stabilization and control systems -- Atomic and molecular discriminants -- Nonlinear optics -- Frequency and amplitude modulation
Machine generated contents note: 1.Gaussian beams -- 1.1.Introduction -- 1.2.The paraxial wave equation -- 1.3.Gaussian beam functions and the complex beam parameter, q -- 1.4.Some Gaussian beam properties -- 1.5.The phase term: Gouy phase -- 1.6.Simple transformation properties of the complex beam parameter -- 1.7.Matrix formulation of paraxial ray optics: ABCD rule -- 1.8.Further reading -- 1.9.Problems -- 2.Optical resonators -- geometrical properties -- 2.1.Introduction -- 2.2.The two-mirror standing-wave cavity -- 2.3.Stability -- 2.4.Solution for an arbitrary two-mirror stable cavity -- 2.5.Higher-order modes -- 2.6.Resonant frequencies -- 2.7.The traveling-wave (ring) cavity -- 2.8.Astigmatism in a ring cavity -- 2.9.Mode matching -- 2.10.Beam quality characterization: the M2 parameter -- 2.11.Further reading -- 2.12.Problems -- 3.Energy relations in optical cavities -- 3.1.Introduction -- 3.2.Reflection and transmission at an interface --
Contents note continued: 3.3.Reflected fields from standing-wave cavity -- 3.4.Internal (circulating) field in a standing-wave cavity -- 3.5.Reflected and internal intensities -- 3.6.The resonant character of the reflected and circulating intensities -- 3.7.Impedance matching -- 3.8.Fields and intensities in ring cavity -- 3.9.A novel "reflective" coupling scheme using a tilted wedge -- 3.10.Photon lifetime -- 3.11.The quality factor, Q -- 3.12.Relation between Q and finesse -- 3.13.Alternative representation of cavity loss -- 3.14.Experimental determination of cavity parameters -- 3.15.Farther reading -- 3.16.Problems -- 4.Optical cavity as frequency discriminator -- 4.1.Introduction -- 4.2.A simple example -- 4.3.Side of resonance discriminant -- 4.4.The manipulation of polarized beams: the Jones calculus -- 4.5.The polarization technique -- 4.6.Frequency modulation -- 4.7.The Pound--Drever--Hall approach -- 4.8.Frequency response of a cavity-based discriminator --
Contents note continued: 4.9.Further reading -- 4.10.Problems -- 5.Laser gain and some of its consequences -- 5.1.Introduction -- 5.2.The wave equation -- 5.3.The interaction term -- 5.4.The rotating-wave approximation -- 5.5.Density matrix of two-level system -- 5.6.The classical Bloch equation -- 5.7.Connection between two-level atom and spin-1/2 system -- 5.8.Radiative and collision-induced damping -- 5.9.The atomic susceptibility and optical gain -- 5.10.The Einstein A and B coefficients -- 5.11.Doppler broadening: an example of inhomogeneous broadening -- 5.12.Comments on saturation -- 5.13.Further reading -- 5.14.Problems -- 6.Laser oscillation and pumping mechanisms -- 6.1.Introduction -- 6.2.The condition for laser oscillation -- 6.3.The power output of a laser -- 6.4.Pumping in three-level and four-level laser systems -- 6.5.Laser oscillation frequencies and pulling -- 6.6.Inhomogeneous broadening and multimode behavior -- 6.7.Spatial hole burning --
Contents note continued: 6.8.Some consequences of the photon model for laser radiation -- 6.9.The photon statistics of laser radiation -- 6.10.The ultimate linewidth of a laser -- 6.11.Further reading -- 6.12.Problems -- 7.Descriptions of specific CW laser systems -- 7.1.Introduction -- 7.2.The He-Ne laser -- 7.3.The argon-ion laser -- 7.4.The continuous-wave organic dye laser -- 7.5.The titanium--sapphire laser -- 7.6.The CW neodymium--yttrium-aluminum--garnet (Nd:YAG) laser -- 7.7.The YAG non-planar ring oscillator: a novel ring laser geometry -- 7.8.Diode-pumped solid-state (DPSS) YAG lasers -- 7.9.Further reading -- 8.Laser gain in a semiconductor -- 8.1.Introduction -- 8.2.Solid-state physics background -- 8.3.Optical gain in a semiconductor -- 8.4.Further reading -- 8.5.Problems -- 9.Semiconductor diode lasers -- 9.1.Introduction -- 9.2.The homojunction semiconductor laser -- 9.3.The double heterostructure laser -- 9.4.Quantum-well lasers --
Contents note continued: 9.5.Distributed feedback lasers -- 9.6.The rate equations and relaxation oscillations -- 9.7.Diode laser frequency control and linewidth -- 9.8.External cavity diode lasers (ECDLs) -- 9.9.Semiconductor laser amplifiers and injection locking -- 9.10.Miscellaneous characteristics of semiconductor lasers -- 9.11.Further reading -- 9.12.Problems -- 10.Guided-wave devices and fiber lasers -- 10.1.Introduction -- 10.2.Slab waveguide: preliminary analysis -- 10.3.Wave propagation in a slab waveguide -- 10.4.Wave propagation in a fiber -- ray theory -- 10.5.Wave propagation in a fiber -- wave theory -- 10.6.Dispersion in fibers and waveguides -- 10.7.Coupling into optical fibers -- 10.8.Fiber-optic components -- 10.8.1.Directional coupler -- 10.8.2.The loop reflector -- 10.8.3.Fiber Bragg gratings -- 10.8.4.Optical isolators and circulators -- 10.8.5.Amplitude and phase modulation -- 10.8.6.Polarization-preserving fibers -- 10.8.7.Polarization controller --
Contents note continued: 10.9.The physics of rare earth ions in glasses -- 10.10.Some specific fiber lasers -- 10.10.1.Fiber laser resonators -- 10.10.2.Erbium and erbium/ytterbium lasers -- 10.10.3.Neodymium lasers -- 10.10.4.Ytterbium lasers -- 10.10.5.Thulium lasers -- 10.11.Further reading -- 10.12.Problems -- 11.Mode-locked lasers and frequency metrology -- 11.1.Introduction -- 11.2.Theory of mode locking -- 11.3.Mode-locking techniques -- 11.4.Dispersion and its compensation -- 11.5.The mode-locked Ti-sapphire laser -- 11.6.Mode-locked fiber lasers -- 11.7.Frequency metrology using a femtosecond laser -- 11.8.The carrier envelope offset -- 11.9.Comb generation in a microresonator -- 11.10.Further reading -- 11.11.Problems -- 12.Laser frequency stabilization and control systems -- 12.1.Introduction -- 12.2.Laser frequency stabilization -- a first look -- 12.3.The effect of the loop filter -- 12.4.Elementary noise considerations -- 12.5.Some linear system theory --
Contents note continued: 12.6.The stability of a linear system -- 12.7.Negative feedback -- 12.8.Some actual control systems -- 12.9.Temperature stabilization -- 12.10.Laser frequency stabilization -- 12.11.Optical-fiber phase noise and its cancellation -- 12.12.Characterization of laser frequency stability -- 12.13.Frequency locking to a noisy resonance -- 12.14.Further reading -- 12.15.Problems -- 13.Atomic and molecular discriminants -- 13.1.Introduction -- 13.2.Sub-Doppler saturation spectroscopy -- 13.3.Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy -- 13.4.An example of a side-of-line atomic discriminant -- 13.5.Further reading -- 13.6.Problems -- 14.Nonlinear optics -- 14.1.Introduction -- 14.2.Anisotropic crystals -- 14.3.Second-harmonic generation -- 14.4.Birefringent phase matching -- 14.5.Quasi-phase matching -- 14.6.Second-harmonic generation using a focused beam -- 14.7.Second-harmonic generation in a cavity --
Contents note continued: 14.8.Sum-frequency generation -- 14.9.Periodically poled optical waveguides -- 14.10.Parametric interactions -- 14.11.Further reading -- 14.12.Problems -- 15.Frequency and amplitude modulation -- 15.1.Introduction -- 15.2.The linear electro-optic effect -- 15.3.Bulk electro-optic modulators -- 15.4.Traveling-wave electro-optic modulators -- 15.5.Acousto-optic modulators -- 15.6.Further reading -- 15.7.Problems
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
Books Books Centeral Library
Second Floor - Engineering & Architecture
537.5 N.W.Q 2014 (Browse shelf) Available 24037

Includes bibliographical references (pages 466-470) and index

Gaussian beams -- Optical resonators : geometrical properties -- Energy relations in optical cavities -- Optical cavity as frequency discriminator -- Laser gain and some of its consequences -- Laser oscillation and pumping mechanisms -- Descriptions of specific CW laser systems -- Laser gain in a semiconductor -- Semiconductor diode lasers -- Guided-wave devices and fiber lasers -- Mode-locked lasers and frequency metrology -- Laser frequency stabilization and control systems -- Atomic and molecular discriminants -- Nonlinear optics -- Frequency and amplitude modulation

Machine generated contents note: 1.Gaussian beams -- 1.1.Introduction -- 1.2.The paraxial wave equation -- 1.3.Gaussian beam functions and the complex beam parameter, q -- 1.4.Some Gaussian beam properties -- 1.5.The phase term: Gouy phase -- 1.6.Simple transformation properties of the complex beam parameter -- 1.7.Matrix formulation of paraxial ray optics: ABCD rule -- 1.8.Further reading -- 1.9.Problems -- 2.Optical resonators -- geometrical properties -- 2.1.Introduction -- 2.2.The two-mirror standing-wave cavity -- 2.3.Stability -- 2.4.Solution for an arbitrary two-mirror stable cavity -- 2.5.Higher-order modes -- 2.6.Resonant frequencies -- 2.7.The traveling-wave (ring) cavity -- 2.8.Astigmatism in a ring cavity -- 2.9.Mode matching -- 2.10.Beam quality characterization: the M2 parameter -- 2.11.Further reading -- 2.12.Problems -- 3.Energy relations in optical cavities -- 3.1.Introduction -- 3.2.Reflection and transmission at an interface --

Contents note continued: 3.3.Reflected fields from standing-wave cavity -- 3.4.Internal (circulating) field in a standing-wave cavity -- 3.5.Reflected and internal intensities -- 3.6.The resonant character of the reflected and circulating intensities -- 3.7.Impedance matching -- 3.8.Fields and intensities in ring cavity -- 3.9.A novel "reflective" coupling scheme using a tilted wedge -- 3.10.Photon lifetime -- 3.11.The quality factor, Q -- 3.12.Relation between Q and finesse -- 3.13.Alternative representation of cavity loss -- 3.14.Experimental determination of cavity parameters -- 3.15.Farther reading -- 3.16.Problems -- 4.Optical cavity as frequency discriminator -- 4.1.Introduction -- 4.2.A simple example -- 4.3.Side of resonance discriminant -- 4.4.The manipulation of polarized beams: the Jones calculus -- 4.5.The polarization technique -- 4.6.Frequency modulation -- 4.7.The Pound--Drever--Hall approach -- 4.8.Frequency response of a cavity-based discriminator --

Contents note continued: 4.9.Further reading -- 4.10.Problems -- 5.Laser gain and some of its consequences -- 5.1.Introduction -- 5.2.The wave equation -- 5.3.The interaction term -- 5.4.The rotating-wave approximation -- 5.5.Density matrix of two-level system -- 5.6.The classical Bloch equation -- 5.7.Connection between two-level atom and spin-1/2 system -- 5.8.Radiative and collision-induced damping -- 5.9.The atomic susceptibility and optical gain -- 5.10.The Einstein A and B coefficients -- 5.11.Doppler broadening: an example of inhomogeneous broadening -- 5.12.Comments on saturation -- 5.13.Further reading -- 5.14.Problems -- 6.Laser oscillation and pumping mechanisms -- 6.1.Introduction -- 6.2.The condition for laser oscillation -- 6.3.The power output of a laser -- 6.4.Pumping in three-level and four-level laser systems -- 6.5.Laser oscillation frequencies and pulling -- 6.6.Inhomogeneous broadening and multimode behavior -- 6.7.Spatial hole burning --

Contents note continued: 6.8.Some consequences of the photon model for laser radiation -- 6.9.The photon statistics of laser radiation -- 6.10.The ultimate linewidth of a laser -- 6.11.Further reading -- 6.12.Problems -- 7.Descriptions of specific CW laser systems -- 7.1.Introduction -- 7.2.The He-Ne laser -- 7.3.The argon-ion laser -- 7.4.The continuous-wave organic dye laser -- 7.5.The titanium--sapphire laser -- 7.6.The CW neodymium--yttrium-aluminum--garnet (Nd:YAG) laser -- 7.7.The YAG non-planar ring oscillator: a novel ring laser geometry -- 7.8.Diode-pumped solid-state (DPSS) YAG lasers -- 7.9.Further reading -- 8.Laser gain in a semiconductor -- 8.1.Introduction -- 8.2.Solid-state physics background -- 8.3.Optical gain in a semiconductor -- 8.4.Further reading -- 8.5.Problems -- 9.Semiconductor diode lasers -- 9.1.Introduction -- 9.2.The homojunction semiconductor laser -- 9.3.The double heterostructure laser -- 9.4.Quantum-well lasers --

Contents note continued: 9.5.Distributed feedback lasers -- 9.6.The rate equations and relaxation oscillations -- 9.7.Diode laser frequency control and linewidth -- 9.8.External cavity diode lasers (ECDLs) -- 9.9.Semiconductor laser amplifiers and injection locking -- 9.10.Miscellaneous characteristics of semiconductor lasers -- 9.11.Further reading -- 9.12.Problems -- 10.Guided-wave devices and fiber lasers -- 10.1.Introduction -- 10.2.Slab waveguide: preliminary analysis -- 10.3.Wave propagation in a slab waveguide -- 10.4.Wave propagation in a fiber -- ray theory -- 10.5.Wave propagation in a fiber -- wave theory -- 10.6.Dispersion in fibers and waveguides -- 10.7.Coupling into optical fibers -- 10.8.Fiber-optic components -- 10.8.1.Directional coupler -- 10.8.2.The loop reflector -- 10.8.3.Fiber Bragg gratings -- 10.8.4.Optical isolators and circulators -- 10.8.5.Amplitude and phase modulation -- 10.8.6.Polarization-preserving fibers -- 10.8.7.Polarization controller --

Contents note continued: 10.9.The physics of rare earth ions in glasses -- 10.10.Some specific fiber lasers -- 10.10.1.Fiber laser resonators -- 10.10.2.Erbium and erbium/ytterbium lasers -- 10.10.3.Neodymium lasers -- 10.10.4.Ytterbium lasers -- 10.10.5.Thulium lasers -- 10.11.Further reading -- 10.12.Problems -- 11.Mode-locked lasers and frequency metrology -- 11.1.Introduction -- 11.2.Theory of mode locking -- 11.3.Mode-locking techniques -- 11.4.Dispersion and its compensation -- 11.5.The mode-locked Ti-sapphire laser -- 11.6.Mode-locked fiber lasers -- 11.7.Frequency metrology using a femtosecond laser -- 11.8.The carrier envelope offset -- 11.9.Comb generation in a microresonator -- 11.10.Further reading -- 11.11.Problems -- 12.Laser frequency stabilization and control systems -- 12.1.Introduction -- 12.2.Laser frequency stabilization -- a first look -- 12.3.The effect of the loop filter -- 12.4.Elementary noise considerations -- 12.5.Some linear system theory --

Contents note continued: 12.6.The stability of a linear system -- 12.7.Negative feedback -- 12.8.Some actual control systems -- 12.9.Temperature stabilization -- 12.10.Laser frequency stabilization -- 12.11.Optical-fiber phase noise and its cancellation -- 12.12.Characterization of laser frequency stability -- 12.13.Frequency locking to a noisy resonance -- 12.14.Further reading -- 12.15.Problems -- 13.Atomic and molecular discriminants -- 13.1.Introduction -- 13.2.Sub-Doppler saturation spectroscopy -- 13.3.Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy -- 13.4.An example of a side-of-line atomic discriminant -- 13.5.Further reading -- 13.6.Problems -- 14.Nonlinear optics -- 14.1.Introduction -- 14.2.Anisotropic crystals -- 14.3.Second-harmonic generation -- 14.4.Birefringent phase matching -- 14.5.Quasi-phase matching -- 14.6.Second-harmonic generation using a focused beam -- 14.7.Second-harmonic generation in a cavity --

Contents note continued: 14.8.Sum-frequency generation -- 14.9.Periodically poled optical waveguides -- 14.10.Parametric interactions -- 14.11.Further reading -- 14.12.Problems -- 15.Frequency and amplitude modulation -- 15.1.Introduction -- 15.2.The linear electro-optic effect -- 15.3.Bulk electro-optic modulators -- 15.4.Traveling-wave electro-optic modulators -- 15.5.Acousto-optic modulators -- 15.6.Further reading -- 15.7.Problems

Available to OhioLINK libraries

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer