35986841_10216840653711318_1105697261150535680_n
Amazon cover image
Image from Amazon.com

Microwave and RF design : a systems approach / Michael Steer

By: Material type: TextTextPublisher: Edison, NJ : Scitech Publishing, [2013]Copyright date: ℗♭2013Edition: 2nd edDescription: xxxiv, 1176 pages : illustrations ; 26 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 1613530218
  • 9781613530214
Subject(s): DDC classification:
  • 621.38418 23
Contents:
Note continued: 9.3.2.Two-Port S Parameters -- 9.3.3.Input Reflection Coefficient of a Terminated Two-Port Network -- 9.3.4.Evaluation of the Scattering Parameters of an Element -- 9.3.5.Properties of a Two-Port in Terms of S Parameters -- 9.3.6.Scattering Transfer or T Parameters -- 9.4.The N-Port Network -- 9.4.1.Generalized Scattering Parameter Relations -- 9.4.2.Normalized and Generalized S Parameters -- 9.4.3.Scattering Parameters and Change of Reference Impedance -- 9.4.4.Passivity in Terms of Scattering Parameters -- 9.4.5.Impedance Matrix Representation -- 9.4.6.Admittance Matrix Representation -- 9.5.Scattering Parameter Matrices of Common Two-Ports -- 9.5.1.Transmission Line -- 9.5.2.Shunt Element -- 9.5.3.Series Element -- 9.6.Scattering Parameter Two-Port Relationships -- 9.6.1.Cascaded Two-Port Networks -- 9.6.2.Change in Reference Plane -- 9.6.3.Conversion between S Parameters and ABCD Parameters -- 9.6.4.Return Loss -- 9.6.5.Insertion Loss -- 9.7.Scattering Parameters and Directional Couplers -- 9.8.Summary -- 9.9.Exercises -- 10.Graphical Microwave Network Analysis and Measurements -- 10.1.Introduction -- 10.2.Signal Flow Graph -- 10.2.1.Signal Flow Graph Representation of Scattering Parameters -- 10.2.2.Simplification and Reduction of Signal Flow Graphs -- 10.2.3.Mason's Rule -- 10.3.Polar Representations of Scattering Parameters -- 10.3.1.Polar Plot for Reflection Coefficient -- 10.3.2.Polar Plot for S Parameters -- 10.4.Smith Chart -- 10.4.1.An Alternative Admittance Chart -- 10.4.2.Expanded Smith Chart -- 10.5.Reflection Coefficient and Change of Reference Impedance -- 10.5.1.Introduction -- 10.5.2.Reference Impedance Change as a Bilinear Transform -- 10.5.3.Determining the Characteristic Impedance of a Line from the Smith Chart -- 10.5.4.Reflection Coefficient Locus -- 10.6.Measurement of Scattering Parameters -- 10.6.1.One-Port Calibration -- 10.6.2.De-Embedding -- 10.6.3.Two-Port Calibration -- 10.6.4.Transmission Line-Based Calibration Schemes -- 10.6.5.Through-Line Calibration -- 10.6.6.Two-Tier Calibration -- 10.7.Extraction of Transmission Line Parameters -- 10.8.Summary -- 10.9.Exercises -- 11.Passive Components -- 11.1.Introduction -- 11.2.Q Factor -- 11.2.1.Definition -- 11.2.2.Q of Lumped Elements -- 11.2.3.Loaded Q Factor -- 11.2.4.Summary of the Properties of Q -- 11.3.Integrated Lumped Elements -- 11.3.1.On-Chip Capacitors -- 11.3.2.Planar Inductors -- 11.4.Surface-Mount Components -- 11.5.Terminations and Attenuators -- 11.5.1.Terminations -- 11.5.2.Attenuators -- 11.6.Transmission Line Stubs and Discontinuities -- 11.6.1.Open -- 11.6.2.Discontinuities -- 11.6.3.Impedance Transformer -- 11.6.4.Planar Radial Stub -- 11.6.5.Stub Transformations -- 11.7.Resonators -- 11.7.1.Dielectric Resonators -- 11.8.Magnetic Transformer -- 11.8.1.Properties of a Magnetic Transformer -- 11.9.Hybrids -- 11.9.1.Quadrature Hybrid -- 11.9.2.180℗ʻ Hybrid -- 11.9.3.Magnetic Transformer Hybrid -- 11.10.Balun -- 11.10.1.Marchand Balun -- 11.11.Wilkinson Combiner and Divider -- 11.12.Chireix Combiner -- 11.13.Transmission Line Transformer -- 11.13.1.Transmission Line Transformer as a Balun -- 11.13.2.4:1 Impedance Transformer at High Frequencies -- 11.13.3.4:1 Impedance Transformer at Low Frequencies -- 11.14.Hybrid Transformer Used as a Combiner -- 11.14.1.Hybrid Transformer Used as a Power Splitter -- 11.14.2.Broadband Hybrid Combiner -- 11.15.Branch-Line Hybrids Based on Transmission Lines -- 11.16.Lumped-Element Hybrids -- 11.17.Summary -- 11.18.Exercises -- 12.Impedance Matching -- 12.1.Introduction -- 12.1.1.Matching for Zero Reflection and for Maximum Power Transfer -- 12.1.2.Matching Networks -- 12.2.Impedance Transforming Networks -- 12.2.1.The Ideal Transformer -- 12.2.2.A Series Reactive Element -- 12.2.3.A Parallel Reactive Element -- 12.3.The L Matching Network -- 12.3.1.Design Equations for Rs > RL -- 12.3.2.L Network Design for Rs < RL -- 12.4.Dealing with Complex Loads -- 12.4.1.Matching -- 12.4.2.Fano-Bode Limits -- 12.5.Multielement Matching -- 12.5.1.The Pi Network -- 12.5.2.Matching Network Q Revisited -- 12.5.3.The T Network -- 12.5.4.Broadband (Low Q) Matching -- 12.6.Impedance Matching Using Smith Charts -- 12.6.1.Two-Element Matching -- 12.7.Distributed Matching -- 12.7.1.Stub Matching -- 12.7.2.Hybrid Lumped-Distributed Matching -- 12.8.Wideband Matching: Constant Q Circles -- 12.9.Summary -- 12.10.Exercises -- pt. IV MICROWAVE MODULES -- 13.RF and Microwave Modules -- 13.1.Introduction to Modules -- 13.2.Nonlinear Distortion -- 13.2.1.Amplitude and Phase Distortion -- 13.2.2.Gain Compression -- 13.2.3.Intermodulation Distortion -- 13.3.Noise -- 13.3.1.Introduction -- 13.3.2.Observations of Noise Spectra -- 13.3.3.Physical Source of Thermal Noise -- 13.3.4.Environmental Noise -- 13.3.5.Thermal Noise and Capacitors -- 13.3.6.Physical Source of Shot Noise -- 13.3.7.Physical Source of Flicker Noise -- 13.3.8.Noise Measures -- 13.3.9.Noise in a Cascaded System -- 13.3.10.Measurement of Noise Figure -- 13.3.11.Measurement of Noise Temperature -- 13.3.12.Measuring the Noise Figure of Low Noise Devices -- 13.3.13.Radiometer System -- 13.3.14.Noise Figure of Two-Port Amplifiers -- 13.4.Dynamic Range -- 13.5.Diodes -- 13.6.Switch -- 13.7.Ferrite Components: Circulators and Isolators -- 13.7.1.Gyromagnetic Effect -- 13.7.2.Circulator -- 13.7.3.Isolator -- 13.7.4.YIG-Tuned Bandpass Filter -- 13.8.Passive Intermodulation Distortion -- 13.8.1.Summary -- 13.9.Summary -- 13.10.Exercises -- 14.Mixer and Source Modules -- 14.1.Introduction -- 14.2.Mixer -- 14.2.1.Mixer Analysis -- 14.2.2.Mixer Performance Parameters -- 14.2.3.Mixer Waveforms -- 14.2.4.Switching Mixer -- 14.2.5.Gilbert Cell -- 14.2.6.Integrated Mixers -- 14.3.Local Oscillator -- 14.3.1.Phase Noise in Local Oscillators -- 14.4.Voltage-Controlled Oscillator -- 14.5.Phase Detector -- 14.6.Frequency Multiplier -- 14.7.Frequency Divider -- 14.8.Phase-Locked Loop -- 14.8.1.Operation -- 14.8.2.First-Order PLL -- 14.8.3.Applications -- 14.9.Direct Digital Synthesizer -- 14.10.Diode and Vacuum Sources -- 14.10.1.Two-Terminal Semiconductor Sources -- 14.10.2.Vacuum Devices -- 14.11.Nonlinear Distortion in a Cascaded System -- 14.11.1.Gain Compression in a Cascaded System -- 14.11.2.Intermodulation Distortion in a Cascaded System -- 14.12.Cascaded Module Design Using the Budget Method -- 14.13.Cascaded Module Design Using the Contribution Method -- 14.13.1.Noise Contribution -- 14.13.2.Intermodulation Contribution -- 14.13.3.Design Methodology for Maximizing Dynamic Range -- 14.14.Case Study: High Dynamic Range Down-Converter Design -- 14.14.1.Architecture -- 14.14.2.Design -- 14.15.Summary -- 14.16.Exercises -- pt. V FILTERS -- 15.Filters -- 15.1.Introduction -- 15.2.Singly and Doubly Terminated Networks -- 15.2.1.Doubly Terminated Networks -- 15.2.2.Lowpass Filter Response -- 15.3.The Lowpass Filter Prototype -- 15.4.The Maximally Flat (Butterworth) Lowpass Approximation -- 15.4.1.Construction of the Transfer Function -- 15.4.2.nth-Order Reflection Approximation -- 15.4.3.Bandwidth Consideration -- 15.5.The Chebyshev Lowpass Approximation -- 15.5.1.Chebyshev Approximation and Recursion -- 15.5.2.Bandwidth Consideration -- 15.6.Element Extraction -- 15.6.1.Summary -- 15.7.Butterworth and Chebyshev Filters -- 15.7.1.Butterworth Filter -- 15.7.2.Chebyshev Filter -- 15.7.3.Summary -- 15.8.Impedance and Admittance Inverters -- 15.8.1.Properties of an Impedance Inverter -- 15.8.2.Replacement of a Series Inductor by a Shunt Capacitor -- 15.8.3.Replacement of a Series Capacitor by a Shunt Inductor -- 15.8.4.Ladder Prototype with Impedance Inverters -- 15.8.5.Lumped-Element Realization of an Inverter -- 15.8.6.Narrowband Realization of an Inverter Using Transmission Line Stubs -- 15.9.Filter Transformations -- 15.9.1.Impedance Transformation -- 15.9.2.Frequency Transformation: Lowpass -- 15.9.3.Lowpass to Highpass Transformation -- 15.9.4.Lowpass to Bandpass Transformation -- 15.9.5.Lowpass to Bandstop Transformation -- 15.9.6.Transformed Ladder Prototypes -- 15.10.Cascaded Line Realization of Filters -- 15.11.Richards's Transformation -- 15.11.1.Richards's Transformation and Transmission Lines -- 15.11.2.Richards's Transformation and Stubs -- 15.11.3.Richards's Transformation Applied to a Lowpass Filter -- 15.11.4.Richards's Transformation Applied to a Highpass Filter -- 15.11.5.Kuroda's Identities -- 15.12.Interresonator-Coupled Bandpass Filters -- 15.12.1.Coupling of a Pair of Resonators -- 15.12.2.Relationship of Ladder Synthesis and Interresonator Coupling -- 15.12.3.Group Delay -- 15.13.Bandpass Filter Topologies -- 15.14.Case Study: Design of a Bandstop Filter -- 15.15.Active Filters -- 15.15.1.Radio Frequency Active Filters -- 15.15.2.Biquadratic Filters -- 15.15.3.Distributed Active Filters -- 15.16.Transient Response of a Bandpass Filter -- 15.17.Summary -- 15.18.Exercises -- 16.Parallel Coupled-Line Filters -- 16.1.Introduction -- 16.2.Parallel Coupled Lines -- 16.2.1.Coupled-Line Configurations -- 16.2.2.Coupled-Line Circuit Models -- 16.3.Inverter Network Scaling -- 16.4.Case Study: Third-Order Chebyshev Combline Filter Design -- 16.4.1.Realization of the Input/Output Inverters -- 16.4.2.Implementation -- 16.4.3.Alternative Combline Filter Layouts -- 16.5.Parallel Coupled-Line Filters in an Inhomogeneous Medium -- 16.6.Summary -- 16.7.Exercises -- pt. VI AMPLIFIERS AND OSCILLATORS -- 17.Linear Amplifiers -- 17.1.Introduction -- 17.2.Transistor Technology -- 17.2.1.Transistor Types -- 17.2.2.BJT and HBT Fundamentals -- 17.2.3.MOSFET Fundamentals -- 17.2.4.MESFET, HEMT, and JFET Fundamentals -- 17.3.Linear Amplifier Design Strategies -- 17.3.1.Amplifier Topology -- 17.4.Amplifier Gain Definitions -- 17.4.1.Gain in Terms of Scattering Parameters -- 17.4.2.Design Using Gain Metrics -- 17.4.3.Gain Circles -- 17.5.Amplifier Efficiency -- 17.6.Class A, AB, B, and C Amplifiers -- 17.6.1.Class A Amplifier --
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books Centeral Library Second Floor - Engineering & Architecture 621.38418 S.S.M 2013 (Browse shelf(Opens below)) Available 21730
Books Books Centeral Library Second Floor - Engineering & Architecture 621.38418 S.S.M 2013 (Browse shelf(Opens below)) Available 21729
Browsing Centeral Library shelves, Shelving location: Second Floor - Engineering & Architecture Close shelf browser (Hides shelf browser)
621.38415 Z.T.U 2013 Ultra-wideband RF system engineering 621.38418 Q.R.B 2013 Build your own transistor radios : 621.38418 Q.R.B 2013 Build your own transistor radios : 621.38418 S.S.M 2013 Microwave and RF design : 621.38418 S.S.M 2013 Microwave and RF design : 621.38419 M.G.A 2013 Advances in analog and RF IC design for wireless communication systems 621.384192 D.D.R 2013 The RF in RFID

Includes bibliographical references and index

Note continued: 9.3.2.Two-Port S Parameters -- 9.3.3.Input Reflection Coefficient of a Terminated Two-Port Network -- 9.3.4.Evaluation of the Scattering Parameters of an Element -- 9.3.5.Properties of a Two-Port in Terms of S Parameters -- 9.3.6.Scattering Transfer or T Parameters -- 9.4.The N-Port Network -- 9.4.1.Generalized Scattering Parameter Relations -- 9.4.2.Normalized and Generalized S Parameters -- 9.4.3.Scattering Parameters and Change of Reference Impedance -- 9.4.4.Passivity in Terms of Scattering Parameters -- 9.4.5.Impedance Matrix Representation -- 9.4.6.Admittance Matrix Representation -- 9.5.Scattering Parameter Matrices of Common Two-Ports -- 9.5.1.Transmission Line -- 9.5.2.Shunt Element -- 9.5.3.Series Element -- 9.6.Scattering Parameter Two-Port Relationships -- 9.6.1.Cascaded Two-Port Networks -- 9.6.2.Change in Reference Plane -- 9.6.3.Conversion between S Parameters and ABCD Parameters -- 9.6.4.Return Loss -- 9.6.5.Insertion Loss -- 9.7.Scattering Parameters and Directional Couplers -- 9.8.Summary -- 9.9.Exercises -- 10.Graphical Microwave Network Analysis and Measurements -- 10.1.Introduction -- 10.2.Signal Flow Graph -- 10.2.1.Signal Flow Graph Representation of Scattering Parameters -- 10.2.2.Simplification and Reduction of Signal Flow Graphs -- 10.2.3.Mason's Rule -- 10.3.Polar Representations of Scattering Parameters -- 10.3.1.Polar Plot for Reflection Coefficient -- 10.3.2.Polar Plot for S Parameters -- 10.4.Smith Chart -- 10.4.1.An Alternative Admittance Chart -- 10.4.2.Expanded Smith Chart -- 10.5.Reflection Coefficient and Change of Reference Impedance -- 10.5.1.Introduction -- 10.5.2.Reference Impedance Change as a Bilinear Transform -- 10.5.3.Determining the Characteristic Impedance of a Line from the Smith Chart -- 10.5.4.Reflection Coefficient Locus -- 10.6.Measurement of Scattering Parameters -- 10.6.1.One-Port Calibration -- 10.6.2.De-Embedding -- 10.6.3.Two-Port Calibration -- 10.6.4.Transmission Line-Based Calibration Schemes -- 10.6.5.Through-Line Calibration -- 10.6.6.Two-Tier Calibration -- 10.7.Extraction of Transmission Line Parameters -- 10.8.Summary -- 10.9.Exercises -- 11.Passive Components -- 11.1.Introduction -- 11.2.Q Factor -- 11.2.1.Definition -- 11.2.2.Q of Lumped Elements -- 11.2.3.Loaded Q Factor -- 11.2.4.Summary of the Properties of Q -- 11.3.Integrated Lumped Elements -- 11.3.1.On-Chip Capacitors -- 11.3.2.Planar Inductors -- 11.4.Surface-Mount Components -- 11.5.Terminations and Attenuators -- 11.5.1.Terminations -- 11.5.2.Attenuators -- 11.6.Transmission Line Stubs and Discontinuities -- 11.6.1.Open -- 11.6.2.Discontinuities -- 11.6.3.Impedance Transformer -- 11.6.4.Planar Radial Stub -- 11.6.5.Stub Transformations -- 11.7.Resonators -- 11.7.1.Dielectric Resonators -- 11.8.Magnetic Transformer -- 11.8.1.Properties of a Magnetic Transformer -- 11.9.Hybrids -- 11.9.1.Quadrature Hybrid -- 11.9.2.180℗ʻ Hybrid -- 11.9.3.Magnetic Transformer Hybrid -- 11.10.Balun -- 11.10.1.Marchand Balun -- 11.11.Wilkinson Combiner and Divider -- 11.12.Chireix Combiner -- 11.13.Transmission Line Transformer -- 11.13.1.Transmission Line Transformer as a Balun -- 11.13.2.4:1 Impedance Transformer at High Frequencies -- 11.13.3.4:1 Impedance Transformer at Low Frequencies -- 11.14.Hybrid Transformer Used as a Combiner -- 11.14.1.Hybrid Transformer Used as a Power Splitter -- 11.14.2.Broadband Hybrid Combiner -- 11.15.Branch-Line Hybrids Based on Transmission Lines -- 11.16.Lumped-Element Hybrids -- 11.17.Summary -- 11.18.Exercises -- 12.Impedance Matching -- 12.1.Introduction -- 12.1.1.Matching for Zero Reflection and for Maximum Power Transfer -- 12.1.2.Matching Networks -- 12.2.Impedance Transforming Networks -- 12.2.1.The Ideal Transformer -- 12.2.2.A Series Reactive Element -- 12.2.3.A Parallel Reactive Element -- 12.3.The L Matching Network -- 12.3.1.Design Equations for Rs > RL -- 12.3.2.L Network Design for Rs < RL -- 12.4.Dealing with Complex Loads -- 12.4.1.Matching -- 12.4.2.Fano-Bode Limits -- 12.5.Multielement Matching -- 12.5.1.The Pi Network -- 12.5.2.Matching Network Q Revisited -- 12.5.3.The T Network -- 12.5.4.Broadband (Low Q) Matching -- 12.6.Impedance Matching Using Smith Charts -- 12.6.1.Two-Element Matching -- 12.7.Distributed Matching -- 12.7.1.Stub Matching -- 12.7.2.Hybrid Lumped-Distributed Matching -- 12.8.Wideband Matching: Constant Q Circles -- 12.9.Summary -- 12.10.Exercises -- pt. IV MICROWAVE MODULES -- 13.RF and Microwave Modules -- 13.1.Introduction to Modules -- 13.2.Nonlinear Distortion -- 13.2.1.Amplitude and Phase Distortion -- 13.2.2.Gain Compression -- 13.2.3.Intermodulation Distortion -- 13.3.Noise -- 13.3.1.Introduction -- 13.3.2.Observations of Noise Spectra -- 13.3.3.Physical Source of Thermal Noise -- 13.3.4.Environmental Noise -- 13.3.5.Thermal Noise and Capacitors -- 13.3.6.Physical Source of Shot Noise -- 13.3.7.Physical Source of Flicker Noise -- 13.3.8.Noise Measures -- 13.3.9.Noise in a Cascaded System -- 13.3.10.Measurement of Noise Figure -- 13.3.11.Measurement of Noise Temperature -- 13.3.12.Measuring the Noise Figure of Low Noise Devices -- 13.3.13.Radiometer System -- 13.3.14.Noise Figure of Two-Port Amplifiers -- 13.4.Dynamic Range -- 13.5.Diodes -- 13.6.Switch -- 13.7.Ferrite Components: Circulators and Isolators -- 13.7.1.Gyromagnetic Effect -- 13.7.2.Circulator -- 13.7.3.Isolator -- 13.7.4.YIG-Tuned Bandpass Filter -- 13.8.Passive Intermodulation Distortion -- 13.8.1.Summary -- 13.9.Summary -- 13.10.Exercises -- 14.Mixer and Source Modules -- 14.1.Introduction -- 14.2.Mixer -- 14.2.1.Mixer Analysis -- 14.2.2.Mixer Performance Parameters -- 14.2.3.Mixer Waveforms -- 14.2.4.Switching Mixer -- 14.2.5.Gilbert Cell -- 14.2.6.Integrated Mixers -- 14.3.Local Oscillator -- 14.3.1.Phase Noise in Local Oscillators -- 14.4.Voltage-Controlled Oscillator -- 14.5.Phase Detector -- 14.6.Frequency Multiplier -- 14.7.Frequency Divider -- 14.8.Phase-Locked Loop -- 14.8.1.Operation -- 14.8.2.First-Order PLL -- 14.8.3.Applications -- 14.9.Direct Digital Synthesizer -- 14.10.Diode and Vacuum Sources -- 14.10.1.Two-Terminal Semiconductor Sources -- 14.10.2.Vacuum Devices -- 14.11.Nonlinear Distortion in a Cascaded System -- 14.11.1.Gain Compression in a Cascaded System -- 14.11.2.Intermodulation Distortion in a Cascaded System -- 14.12.Cascaded Module Design Using the Budget Method -- 14.13.Cascaded Module Design Using the Contribution Method -- 14.13.1.Noise Contribution -- 14.13.2.Intermodulation Contribution -- 14.13.3.Design Methodology for Maximizing Dynamic Range -- 14.14.Case Study: High Dynamic Range Down-Converter Design -- 14.14.1.Architecture -- 14.14.2.Design -- 14.15.Summary -- 14.16.Exercises -- pt. V FILTERS -- 15.Filters -- 15.1.Introduction -- 15.2.Singly and Doubly Terminated Networks -- 15.2.1.Doubly Terminated Networks -- 15.2.2.Lowpass Filter Response -- 15.3.The Lowpass Filter Prototype -- 15.4.The Maximally Flat (Butterworth) Lowpass Approximation -- 15.4.1.Construction of the Transfer Function -- 15.4.2.nth-Order Reflection Approximation -- 15.4.3.Bandwidth Consideration -- 15.5.The Chebyshev Lowpass Approximation -- 15.5.1.Chebyshev Approximation and Recursion -- 15.5.2.Bandwidth Consideration -- 15.6.Element Extraction -- 15.6.1.Summary -- 15.7.Butterworth and Chebyshev Filters -- 15.7.1.Butterworth Filter -- 15.7.2.Chebyshev Filter -- 15.7.3.Summary -- 15.8.Impedance and Admittance Inverters -- 15.8.1.Properties of an Impedance Inverter -- 15.8.2.Replacement of a Series Inductor by a Shunt Capacitor -- 15.8.3.Replacement of a Series Capacitor by a Shunt Inductor -- 15.8.4.Ladder Prototype with Impedance Inverters -- 15.8.5.Lumped-Element Realization of an Inverter -- 15.8.6.Narrowband Realization of an Inverter Using Transmission Line Stubs -- 15.9.Filter Transformations -- 15.9.1.Impedance Transformation -- 15.9.2.Frequency Transformation: Lowpass -- 15.9.3.Lowpass to Highpass Transformation -- 15.9.4.Lowpass to Bandpass Transformation -- 15.9.5.Lowpass to Bandstop Transformation -- 15.9.6.Transformed Ladder Prototypes -- 15.10.Cascaded Line Realization of Filters -- 15.11.Richards's Transformation -- 15.11.1.Richards's Transformation and Transmission Lines -- 15.11.2.Richards's Transformation and Stubs -- 15.11.3.Richards's Transformation Applied to a Lowpass Filter -- 15.11.4.Richards's Transformation Applied to a Highpass Filter -- 15.11.5.Kuroda's Identities -- 15.12.Interresonator-Coupled Bandpass Filters -- 15.12.1.Coupling of a Pair of Resonators -- 15.12.2.Relationship of Ladder Synthesis and Interresonator Coupling -- 15.12.3.Group Delay -- 15.13.Bandpass Filter Topologies -- 15.14.Case Study: Design of a Bandstop Filter -- 15.15.Active Filters -- 15.15.1.Radio Frequency Active Filters -- 15.15.2.Biquadratic Filters -- 15.15.3.Distributed Active Filters -- 15.16.Transient Response of a Bandpass Filter -- 15.17.Summary -- 15.18.Exercises -- 16.Parallel Coupled-Line Filters -- 16.1.Introduction -- 16.2.Parallel Coupled Lines -- 16.2.1.Coupled-Line Configurations -- 16.2.2.Coupled-Line Circuit Models -- 16.3.Inverter Network Scaling -- 16.4.Case Study: Third-Order Chebyshev Combline Filter Design -- 16.4.1.Realization of the Input/Output Inverters -- 16.4.2.Implementation -- 16.4.3.Alternative Combline Filter Layouts -- 16.5.Parallel Coupled-Line Filters in an Inhomogeneous Medium -- 16.6.Summary -- 16.7.Exercises -- pt. VI AMPLIFIERS AND OSCILLATORS -- 17.Linear Amplifiers -- 17.1.Introduction -- 17.2.Transistor Technology -- 17.2.1.Transistor Types -- 17.2.2.BJT and HBT Fundamentals -- 17.2.3.MOSFET Fundamentals -- 17.2.4.MESFET, HEMT, and JFET Fundamentals -- 17.3.Linear Amplifier Design Strategies -- 17.3.1.Amplifier Topology -- 17.4.Amplifier Gain Definitions -- 17.4.1.Gain in Terms of Scattering Parameters -- 17.4.2.Design Using Gain Metrics -- 17.4.3.Gain Circles -- 17.5.Amplifier Efficiency -- 17.6.Class A, AB, B, and C Amplifiers -- 17.6.1.Class A Amplifier --

There are no comments on this title.

to post a comment.