35986841_10216840653711318_1105697261150535680_n
Amazon cover image
Image from Amazon.com

Fundamentals of engineering plasticity / William F. Hosford, University of Michigan.

By: Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2013Edition: 1st edDescription: vii, 267 pages : illustrations ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9781107037557 (hardback)
Subject(s): DDC classification:
  • 620.1633 23
LOC classification:
  • TA418.14 .H67 2013
Other classification:
  • SCI085000
Contents:
Machine generated contents note: 1. An overview of the history of plasticity theory; 2. Yielding; 3. Stress and strain; 4. Isotropic yield criteria; 5. Bounding theorems and work principles; 6. Slip-line field theory; 7. Anisotropic plasticity; 8. Slip and dislocations; 9. Taylor and Bishop and Hill models; 10. Pencil glide calculations of yield loci; 11. Mechanical twinning and Martensitic shear; 12. Effects of strain hardening and strain-rate dependence; 13. Defect analysis; 14. Effects of pressure and sign of stress state; 15. Lower bound analysis; 16. Plasticity tests.
Summary: "This book is ideal for those involved in designing sheet metal forming processes. Knowledge of plasticity is essential for the computer simulation of metal forming processes, and understanding the advances in plasticity theory is key to formulating sound analyses. In this book, William Hosford makes the subjects simple by avoiding notations used by specialists in mechanics. R. Hill's authoritative book, Mathematical Theory of Plasticity (1950), presented a comprehensive treatment of continuum plasticity theory up to that time; although much of the treatment in this book covers the same ground, it focuses on more practical topics. Hosford has also included recent developments in continuum theory, including a newer treatment of anisotropy that has resulted from calculations of yielding based on crystallography, analysis of the role of defects, and forming limit diagrams. This text also puts a much greater emphasis on deformation mechanisms, and includes chapters on slip and dislocation theory and twinning"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books Centeral Library Second Floor - Engineering & Architecture 620.1633 H.W.F 2013 (Browse shelf(Opens below)) Available 22125
Books Books Centeral Library Second Floor - Engineering & Architecture 620.1633 H.W.F 2013 (Browse shelf(Opens below)) Available 22126

Includes bibliographical references and index.

Machine generated contents note: 1. An overview of the history of plasticity theory; 2. Yielding; 3. Stress and strain; 4. Isotropic yield criteria; 5. Bounding theorems and work principles; 6. Slip-line field theory; 7. Anisotropic plasticity; 8. Slip and dislocations; 9. Taylor and Bishop and Hill models; 10. Pencil glide calculations of yield loci; 11. Mechanical twinning and Martensitic shear; 12. Effects of strain hardening and strain-rate dependence; 13. Defect analysis; 14. Effects of pressure and sign of stress state; 15. Lower bound analysis; 16. Plasticity tests.

"This book is ideal for those involved in designing sheet metal forming processes. Knowledge of plasticity is essential for the computer simulation of metal forming processes, and understanding the advances in plasticity theory is key to formulating sound analyses. In this book, William Hosford makes the subjects simple by avoiding notations used by specialists in mechanics. R. Hill's authoritative book, Mathematical Theory of Plasticity (1950), presented a comprehensive treatment of continuum plasticity theory up to that time; although much of the treatment in this book covers the same ground, it focuses on more practical topics. Hosford has also included recent developments in continuum theory, including a newer treatment of anisotropy that has resulted from calculations of yielding based on crystallography, analysis of the role of defects, and forming limit diagrams. This text also puts a much greater emphasis on deformation mechanisms, and includes chapters on slip and dislocation theory and twinning"--

There are no comments on this title.

to post a comment.